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Abstract

The notion of quasihyponormal and strongly quasihyponormal ma-
trices is introduced in spaces equipped with possibly degenerate indef-
inite inner product, based on the works that studied hyponormal and
strongly hyponormal matrices in these spaces. Generalizations of some
results known for normal and hyponormal matrices are established.

2010 Mathematics Subject Classification: 15A63, 47B50, 47B20,
46C20.

Keywords and phrases: Indefinite inner product, adjoint, linear re-
lation, H-quasihyponormal, H-hyponormal, strongly H-quasihyponormal,
invariant semidefinite subspaces

1 Introduction

Let Cn denote the vector space of n by 1 complex vectors equipped with
an indefinite inner product induced by possibly singular Hermitian matrix
H ∈ Cn×n via the formula

[x, y] = 〈Hx, y〉
where 〈., .〉 denotes the standard inner product on Cn. If the Hermitian
matrix H is invertible, then the indefinite inner product is nondegenerate.
In that case, for every matrix T ∈ Cn×n there is the unique matrix T [∗]

satisfying
[T [∗]x, y] = [x, Ty], for all x, y ∈ Cn,

and it is given by T [∗] = H−1T ∗H. In these spaces the notion of H-
quasihyponormal matrix can be introduced by analogy with the quasihy-
ponormal operators in Hilbert space, i.e. with

HT [∗](T [∗]T − TT [∗])T ≥ 0.

Spaces with a degenerate inner product (that is, those whose Gram ma-
trix H is singular) often appear in applications, e.g. in the theory of oper-
ator pencils [5]. Spaces with degenerate form have been studied less. One
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of problems that arises here is that the H-adjoint of the matrix T ∈ Cn×n

need not exist (see examples in [4, 11]).
A matrix T ∈ Cn×n can always be interpreted as a linear relation via its

graph Γ(T ), where: Γ(T ) :=
{(

x
Tx

)
: x ∈ Cn

}
⊆ C2n. As in ([4, 10, 11]),

we will consider H-adjoint T [∗] not as a matrix, but as a linear relation
in Cn, i.e. a subspace of C2n. The H-adjoint of T is the linear relation

T [∗] =
{(

y
z

)
∈ C2n : [y, ω] = [z, x] for all

(
x
ω

)
∈ T

}
. The domain of

a linear relation T ⊆ C2n is defined by domT =
{

x :
(

x
y

)
∈ T

}
. If

domT = Cn we say that T has full domain. We just mention that we can
always find a basis of Cn such that the matrices H and T have the forms:

H =
[

H1 0
0 0

]
and T =

[
T1 T2

T3 T4

]
. (1)

where H1, T1 ∈ Cm×m, m ≤ n, and H1 is invertible.

Here H1 is an invertible Hermitian matrix and the inner product induced
by it is nondegenerate. From the ([10], Proposition 2.6) we have

T [∗]H =








y1

y2

T1
[∗]H1y1

z2


 : T2

∗H1y1 = 0





.

Here we will suppress the subscripts H and H1 whenever it is clear from
the context what is meant. Also, ek = 〈0, . . . , 0, 1, 0, . . . , 0〉> ∈ Cn will de-
note the kth standard unit vector. Of course, R(T ) and KerT will denote
the range and kernel of a matrix T , respectively. About indefinite inner
product spaces see ([1, 2, 3]).

This paper is organized as follows. In the second section we give some
basic definitions and properties concerning subspaces, linear relations and
notion of H-hyponormality. In section 3, we give the definition of H-
quasihyponormal matrices and linear relation. In the fourth section we
introduce strongly H-quasihyponormal matrices and linear relations and in-
vestigate their connection with Moore-Penrose H-normal matrices. In sec-
tion 5, we conclude by assertion that for H-quasihyponormal matrices KerH
is contained in an invariant H-neutral subspace.
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2 Preliminaries

Let H be a possibly singular Hermitian n× n matrix that defines indefinite
inner product. If L ⊂ Cn is a subspace, then its H - orthogonal complement
in Cn is defined by

L[⊥] = {x ∈ Cn : [x, y] = 0 for all y ∈ L} .

The orthogonal complement of some subspace L is not necessarily the di-
rect complement. It is true if and only if L is nondegenerate. If L and
M are subspaces in Cn, with M ⊂ L[⊥] and M ∩ L = {0}, then by
L[+̇]M we denote the direct H-orthogonal sum of L and M . A vector
x ∈ Cn is H-positive (H-negative, H-neutral) if [x, x] > 0 (resp. [x, x] < 0,
[x, x] = 0), and H-nonnegative (H-nonpositive) if x is not H-negative (not
H-positive). A subspace L ⊂ Cn is positive with respect to [., .] (or H-
positive) if [x, x] > 0 for all nonzero x in L. Similarly H-negative, H-
neutral, H-nonpositive, H-nonnegative subspaces are defined. The subspace
L is maximal H-nonnegative if it is not properly contained in any larger H-
nonnegative subspace. In [3] it was proved that H-nonnegative subspace is
maximal if and only if its dimension is equal to the number of positive eigen-
values of H counted with multiplicities. A subspace L ⊂ Cn is T -invariant
if TL ⊆ L.

A linear relation T ⊆ C2n is H-symmetric if T ⊆ T [∗] and H-normal
if TT [∗] ⊆ T [∗]T . A linear relation T ⊆ C2n is H-nonnegative if T is H-

symmetric and if [y, x] ≥ 0 for all
(

x
y

)
∈ T . In [4] the definition of the

H-hyponormal linear relation is given.

Definition 2.1. The linear relation T ⊆ C2n is H-hyponormal if T [∗]T has
full domain and if T [∗]T − TT [∗] is H-nonnegative.

Also, it is important to mention the result given in [4], Proposition 2.6,
that if T ∈ Cn×n is a matrix and T and H are in the form (1), then the lin-
ear relation T [∗]T has full domain if and only if T ∗2 H1T1 = 0 and T ∗2 H1T2 = 0.

In this paper we introduce the concept of H-quasihyponormal linear
relation and matrices. Also, we give the connection with H-hyponormal
matrices and check how some of their properties can be extended to H-
quasihyponormal case.
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3 H-quasihyponormal matrices

Let H be a Hilbert space. The operator T ∈ B(H) is quasihyponormal
if ||T ∗Tx|| ≤ ||T 2x||, for every x ∈ H, or equivalently 〈T ∗Tx|T ∗Tx〉 ≤
〈T 2x|T 2x〉, i.e. (T ∗T )2 ≤ (T ∗)2T 2.

By analogy, one can define the H-quasihyponormal matrices in indef-
inite inner product spaces. For an invertible matrix H, the matrix T is
H-quasihyponormal if it satisfies the condition:

[T [∗]Tx, T [∗]Tx] ≤ [T 2x, T 2x].

This condition can be written in the form [(T [∗]T )2x, x] ≤ [(T [∗])2T 2x, x],
i.e. H((T [∗])2T 2 − (T [∗]T )2) ≥ 0.

It is convenient to write it as HT [∗](T [∗]T − TT [∗])T ≥ 0.
If H is invertible, then we can write the last inequality as: T ∗H(T [∗]T −

TT [∗])T ≥ 0.
As it is known, if the Hermitian matrix H ∈ Cn×n is invertible, then an

H-hyponormal matrix T by definition satisfies H(T [∗]T − TT [∗]) ≥ 0, i.e.
T [∗]T − TT [∗] is H-nonnegative.
It is easy to see that in the case of invertible matrix H, every H-hyponormal
matrix is H-quasihiponormal matrix, as well.
Our aim is to extend the notion of H-quasihyponormality to the case of
singular matrix H.

Theorem 3.1. Let T ⊆ C2n be a linear relation. Then (T [∗])2T 2− (T [∗]T )2

is H-symmetric, i.e.,

(T [∗])2T 2 − (T [∗]T )2 ⊆ ((T [∗])2T 2 − (T [∗]T )2)[∗].

Proof. From the proof of the Proposition 4.4. [4] it follows that

T 2 ⊆ ((T [∗])2)[∗] and (T [∗])2 ⊆ (T 2)[∗]

and from Proposition 2.3(iii) [4] we have

(T [∗])2T 2 ⊆ (T 2)[∗]((T [∗])2)[∗] ⊆ ((T [∗])2T 2)[∗]. (2)

In [4] it is already shown that T [∗]T and TT [∗] are H-symmetric linear
relations, so

(T [∗]T )2 = T [∗]TT [∗]T ⊆ (T [∗]T )[∗](T [∗]T )[∗] ⊆
(
T [∗]TT [∗]T

)[∗]
=

(
(T [∗]T )2

)[∗]
.

(3)
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Now, (2), (3) and Proposition 2.3(ii) [4] imply

(T [∗])2T 2 − (T [∗]T )2 ⊆
(
(T 2)[∗]T 2 − (T [∗]T )2

)[∗]
,

i.e. (T [∗])2T 2 − (T [∗]T )2 is H-symmetric.

Let T and H be in the form (1). Then we have that (T [∗]T )2 is a linear
relation of the form:




y1

y2

T
[∗]
1 T1T

[∗]
1 (T1y1 + T2y2) + T

[∗]
1 T2z2

ω2


 ,

where
T ∗2 H1(T1y1 + T2y2) = 0 and

T ∗2 H1T1T
[∗]
1 (T1y1 + T2y2) + T ∗2 H1T2z2 = 0.

Here, z2 and ω2 are arbitrary numbers. To avoid the emptiness of do-
main, we will assume that T2

∗H1T2 = 0. Under this assumption we have
that (T [∗]T )2 is a linear relation of the form:




y1

y2

T
[∗]
1 T1T

[∗]
1 (T1y1 + T2y2) + T

[∗]
1 T2z2

ω2


 ,

where
T ∗2 H1T1y1 = 0 and T ∗2 H1T1T

[∗]
1 (T1y1 + T2y2) = 0.

Similarly, using T ∗2 H1T2 = 0, we obtain that (T [∗])2T 2 is a linear relation
of the form:




y1

y2

(T1
[∗])2(T1

2 + T2T3)y1 + (T1
[∗])2(T1T2 + T2T4)y2

z2


 ,

where
T2
∗H1T1(T1y1 + T2y2) = 0 and

T2
∗H1T1

[∗]T1(T1y1 + T2y2) + T2
∗H1T1

[∗]T2(T3y1 + T4y2) = 0.
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Finally, (T [∗])2T 2 − (T [∗]T )2 is a linear relation:



y1

y2

T1
[∗](T1

[∗]T1 − T1T1
[∗])(T1y1 + T2y2) + (T1

[∗])2T2(T3y1 + T4y2)− T1
[∗]T2z2

ω2


 ,

where
T2
∗H1T1y1 = 0,

T2
∗H1T1(T1y1 + T2y2) = 0,

T2
∗H1T1T1

[∗](T1y1 + T2y2) = 0 and

T2
∗H1T1

[∗]T1(T1y1 + T2y2) + T2
∗H1T1

[∗]T2(T3y1 + T4y2) = 0.

Theorem 3.2. Let T ∈ Cn×n be a matrix, T and H be in the form (1) and
let T2

∗H1T2 = 0. Then (T [∗])2T 2 − (T [∗]T )2 is H-nonnegative if and only if

(T1y1 + T2y2)∗H1(T
[∗]
1 T1 − T1T

[∗]
1 )(T1y1 + T2y2) ≥ 0,

for all y1, y2 satisfying

(1) T ∗2 H1T1y1 = 0,

(2) T ∗2 H1T1(T1y1 + T2y2) = 0,

(3) T ∗2 H1T1T1
[∗](T1y1 + T2y2) = 0,

(4) T ∗2 H1T1
[∗]T1(T1y1 + T2y2) + T ∗2 H1T1

[∗]T2(T3y1 + T4y2) = 0.

Proof. The linear relation (T [∗])2T 2− (T [∗]T )2 is H-symmetric by Theorem
3.1. Thus, from the previous paragraph one could see that (T [∗])2T 2 −
(T [∗]T )2 is H-nonnegative if and only if

y1
∗H1T1

[∗](T1
[∗]T1 − T1T1

[∗])(T1y1 + T2y2)+

y1
∗H1(T1

[∗])2T2(T3y1 + T4y2)− y1
∗H1T1

[∗]T2z2 ≥ 0,

under conditions (1) – (4).
From (1) we have y1

∗H1T1
[∗]T2z2 = 0, and from (2) y1

∗T1
∗T1

∗H1T2 =
−y2

∗T2
∗T1

∗H1T2, and so

y1
∗H1(T1

[∗])2T2(T3y1 + T4y2) = −y2
∗T2

∗T1
∗H1T2(T3y1 + T4y2).
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Now we get

y1
∗T1

∗H1(T1
[∗]T1−T1T1

[∗])(T1y1 +T2y2)−y2
∗T2

∗T1
∗H1T2(T3y1 +T4y2) ≥ 0.

The condition (4) implies

y1
∗T1

∗H1(T1
[∗]T1−T1T1

[∗])(T1y1 +T2y2)+y2
∗T2

∗T1
∗H1T1(T1y1 +T2y2) ≥ 0.

After some calculations we obtain

(T1y1 + T2y2)∗H1T1
[∗]T1(T1y1 + T2y2)− (T1y1 + T2y2)∗H1T1T1

[∗](T1y1 +
T2y2) + y2

∗T2
∗H1T1T1

[∗](T1y1 + T2y2) ≥ 0.

Because of (3) we finally get:

(T1y1 + T2y2)∗H1(T1
[∗]T1 − T1T1

[∗])(T1y1 + T2y2) ≥ 0.

For an invertible matrix H ∈ Cn×n it is well known that H-quasihyponormality
of a matrix T implies H-hyponormality on R(T ).

Similarly to [4] (Definition 3.5. and Definition 3.1) we give the notion of
H-hyponormality on a subspace.

Definition 3.1. A linear relation T ⊆ C2n is called H-hyponormal on a sub-
space M ⊆ Cn if T [∗]T has full domain and if T [∗]T−TT [∗] is H-nonnegative
on M .

Definition 3.2. A linear relation T ⊆ C2n is H-nonnegative on a subspace
M ⊆ Cn if T is H-symmetric and

[y, x] ≥ 0 for all x ∈ M and all y ∈ Cn such that
(

x
y

)
∈ T.

According to Theorem 3.2. we could define H-quasihyponormal matri-
ces in indefinite inner product spaces in the following way: Let T ∈ Cn×n

and H ∈ Cn×n be matrices given in the form (1). Then the matrix T is H-
quasihyponormal if T ∗2 H1T2 = 0 and (T [∗])2T 2 − (T [∗]T )2 is H-nonnegative.
But, without the condition T ∗2 H1T1 = 0, H-quasihyponormality will never
imply H-hyponormality on any subspace of Cn. Thus, this definition would
not be satisfactory as the next example shows.
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Example 3.1. Let T =
[

T1 T2

T3 T4

]
=




1 1
0 0

1
−1

0 0 0


 and H =




1 0
0 −1

0
0

0 0 0


. Then T

[∗]
1 =

[
1 0
−1 0

]
and T ∗2 H1T2 = 0.

Let y =
(

y1

y2

)
=




y11

y12

y2


 be partitioned conformably with T . Then we

have

T ∗2 H1T1y1 =
[

1 −1
] [

1 0
0 −1

] [
1 1
0 0

] (
y11

y12

)
= y11 + y12 = 0 if and

only if y12 = −y11.

T ∗2 H1T1(T1y1 + T2y2) =
[

1 1
]((

0
0

)
+

(
y2

−y2

))
= 0, for all y2.

T ∗2 H1T1T
[∗]
1 (T1y1 + T2y2) =

[
1 1

] [
1 0
−1 0

]((
0
0

)
+

(
y2

−y2

))
= 0,

for all y2.

T ∗2 H1T
[∗]
1 T1(T1y1 + T2y2) =

[
1 1

] [
1 0
−1 0

] [
1 1
0 0

]((
y2

y2

))
= 0,

for all y2,

so y is in domain of T [∗](T [∗]T − TT [∗])T if and only if y =




y11

−y11

y2


.

In this case we have: (T1y1 + T2y2)∗H1(T
[∗]
1 T1 − T1T

[∗]
1 )(T1y1 + T2y2) = 0.

Thus, the matrix T is H-quasihyponormal.

Is this matrix T H-hyponormal on some subspace of Cn? Of course, the
answer is negative because the condition T ∗2 H1T1 = 0, which is in definition
of H-hyponormal matrices is not satisfied, ([4], Proposition 3.6.).

In previous example the domain of T [∗](T [∗]T − TT [∗])T is too small so
we will require that, as in H-hyponormal case, T [∗]T has full domain, i.e.
that T ∗2 H1T2 = 0 and T ∗2 H1T1 = 0 are satisfied ([4], Proposition 2.6.).

Now, we can give the definition for the H-quasihyponormal linear rela-
tions.

Definition 3.3. A linear relation T ⊆ C2n is called H-quasihyponormal if
T [∗]T has full domain and if (T [∗])2T 2 − (T [∗]T )2 is H-nonnegative.

8



In the next theorem we give characterization of H-quasihyponormal ma-
trices.

Theorem 3.3. Let T ∈ Cn×n be a matrix and T and H be in the form (1).
Then T is H- quasihyponormal if and only if T [∗]T has full domain and

y∗1T
∗
1 H1(T1

[∗]T1 − T1T1
[∗])T1y1 ≥ y∗2T

∗
2 T ∗1 H1T1T2y2

for all y1, y2 satisfying T ∗2 T ∗1 H1T1(T1y1 + T2y2) = 0.

Proof. Let the linear relation T [∗]T have full domain. That means that
T ∗2 H1T1 = 0 and T ∗2 H1T2 = 0. Now, according to Theorem 3.2. (under
the additional assumption of T ∗2 H1T1 = 0), we have: (T [∗])2T 2 − (T [∗]T )2 is
H-nonnegative if and only if

(T1y1 + T2y2)∗H1(T
[∗]
1 T1 − T1T

[∗]
1 )(T1y1 + T2y2) ≥ 0 (4)

for all y1, y2 satisfying T ∗2 H1T
[∗]
1 T1(T1y1 + T2y2) = 0. We can write (4) as

y∗1T
∗
1 H1T

[∗]
1 T1T1y1 + y∗1T

∗
1 H1T

[∗]
1 T1T2y2 − y∗1T

∗
1 H1T1T

[∗]
1 T1y1−

y∗1T
∗
1 H1T1T

[∗]
1 T2y2 + y∗2T

∗
2 H1T

[∗]
1 T1(T1y1 + T2y2)−

y∗2T
∗
2 H1T1T

[∗]
1 (T1y1 + T2y2) ≥ 0.

Now T ∗2 H1T1 = 0 (and so T
[∗]
1 T2 = 0) implies y∗1T

∗
1 H1T1T

[∗]
1 T2y2 = 0 and

y∗2T
∗
2 H1T1T

[∗]
1 (T1y1+T2y2) = 0 . Also, from the condition T ∗2 H1T

[∗]
1 T1(T1y1+

T2y2) = 0 we have y∗2T
∗
2 H1T

[∗]
1 T1(T1y1 +T2y2) = 0 and y∗1T

∗
1 H1T

[∗]
1 T1T2y2 =

−y∗2T
∗
2 H1T

[∗]
1 T1T2y2, so (4) reduces to

y∗1T
∗
1 H1(T1

[∗]T1 − T1T1
[∗])T1y1 ≥ y∗2T

∗
2 T ∗1 H1T1T2y2.

It is easy to see that if matrices T and H are given in the form (1) and
T [∗]T has full domain, then

(
y1

y2

)
∈ dom(T [∗])2T 2 − (T [∗]T )2

if and only if T ∗2 H1T
[∗]
1 T1(T1y1 + T2y2) = 0.
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Our class of H-quasihyponormal matrices should contain all H- hyponor-
mal matrices, i.e. we are going to prove that the class of all H-hyponormal
matrices is a proper subclass of H-quasihyponormal matrices. So we have
the following result.

Theorem 3.4. Let T ∈ Cn×n be a matrix, T and H be in the form (1). If
T is H-hyponormal matrix then T is H-quasihyponormal matrix.

Proof. Let T be an H-hyponormal matrix. By Proposition 3.6. in [4] it
means that T2

∗H1T2 = 0, T2
∗H1T1 = 0 and y1

∗H1(T1
[∗]T1 − T1T1

[∗])y1 ≥ 0,
for all y1 satisfying T2

∗H1y1 = 0.
We have (T1y1 + T2y2)∗H1(T1

[∗]T1− T1T1
[∗])(T1y1 + T2y2) ≥ 0 for all y1 and

y2 as T2
∗H1(T1y1 + T2y2) = 0 is obviously satisfied, so by Theorem 3.3, we

get that T is H-quasihyponormal matrix.

To show that the class of H-quasihyponormal matrices does not coincide
with H-hyponormal matrices, we give the next example.

Example 3.2. Let T =
[

T1 T2

T3 T4

]
=




0 1 0 0
0 1 0 0
0 1 0 0
0 0 0 0

3
1
2
2

0 0 0 0 0




and

H =
[

H1 0
0 0

]
=




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

0
0
0
0

0 0 0 0 0




. Then we show T ∗2 H1T2 =

( 3 1 2 2 )




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







3
1
2
2


 = 0 and

T ∗2 H1T1 = ( 3 1 2 2 )




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







0 1 0 0
0 1 0 0
0 1 0 0
0 0 0 0


 = ( 0 0 0 0 ),

so T ∗2 H1T2 = 0 and T ∗2 H1T1 = 0.
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Furthermore, we have T1
[∗] = H1

−1T ∗1 H1 =




0 0 0 0
−1 1 1 0
0 0 0 0
0 0 0 0


 and

H1(T
[∗]
1 T1 − T1T

[∗]
1 ) =




1 −1 −1 0
−1 0 1 0
−1 1 1 0
0 0 0 0


.

The vector y =




1
3
0
0
y2




is in the domain of T [∗]T − TT [∗], because of

T ∗2 H1y1 = 0, but for that y1 we have y∗1H1(T
[∗]
1 T1 − T1T

[∗]
1 )y1 = −5 < 0,

so we conclude that T is not H-hyponormal matrix ([4], Proposition 3.6.).

Now we check if T is H-quasihyponormal matrix. Let y1 =




y11

y12

y13

y14


.

Then T1y1 + T2y2 =




y12 + 3y2

y12 + y2

y12 + 2y2

2y2


. T ∗2 H1T

[∗]
1 T1(T1y1 + T2y2) = 0 just for

y12 = −y2, i.e. y is in the domain of T [∗](T [∗]T − TT [∗])T if and only if it

has the form y =




y11

−y2

y13

y14

y2




. Hence we have T1y1 + T2y2 =




2y2

0
y2

2y2


.

Finally, we get

(T1y1 + T2y2)∗H1(T
[∗]
1 T1 − T1T

[∗]
1 )(T1y1 + T2y2) = y2y2 ≥ 0.

Thus T is H-quasihyponormal matrix.

Now, the H-quasihyponormal matrices defined like this have the desired
property given in the next result.

Corollary 3.1. Let T ∈ Cn×n be a matrix, T and H be in the form (1).
If T is H-quasihyponormal matrix then T is H-hyponormal on R(T ) ∩
dom (T [∗])2T .
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Proof. Let T be H-quasyhyponormal matrix, where T and H are given in
the form (1). That means that T ∗2 H1T2 = 0, T ∗2 H1T1 = 0 and (T1y1 +
T2y2)∗H1(T

[∗]
1 T1 − T1T

[∗]
1 )(T1y1 + T2y2) ≥ 0 for all y1 and y2 that satisfy

T ∗2 H1T
[∗]
1 T1(T1y1 + T2y2) = 0. As T [∗]T has full domain, z =

(
z1

z2

)
∈

dom(T [∗])2T if and only if T ∗2 H1T
[∗]
1 T1z1 = 0. If z ∈ R(T ) ∩ (T [∗])2T then

z =
(

z1

z2

)
=

(
T1y1 + T2y2

T3y1 + T4y2

)
for some y1 and y2 and T ∗2 H1T

[∗]
1 T1(T1y1 +

T2y2) = 0. We have T ∗2 H1z1 = T ∗2 H1(T1y1+T2y2) = 0, because of T ∗2 H1T2 =
T ∗2 H1T1 = 0. For this z we get

z∗1H1(T
[∗]
1 T1−T1T

[∗]
1 )z1 = (T1y1+T2y2)∗H1(T

[∗]
1 T1−T1T

[∗]
1 )(T1y1+T2y2) ≥ 0.

Thus, T is H-hyponormal on R(T )∩ dom(T [∗])2T by Proposition 3.6. in [4]
and Definition 3.1.

We are familiar with the fact that in the case of H being negative semidef-
inite H-hyponormality implies H-normality. It is not the case between H-
quasihyponormality and H-hyponormality, i.e. for negative semi-definite
matrix H, H-quasyhyponormality does not imply H-hyponormality as the
next example shows.

Example 3.3. T =
[

T1 T2

T3 T4

]
=




−2 1
0 0

0
0

0 0 0


 and

H =
[

H1 0
0 0

]
=




−1 0
0 −1

0
0

0 0 0


. We have that T2 = 0 so T ∗2 H1y1 =

0 and T ∗2 H1T
[∗]
1 T1(T1y1 + T2y2) = 0 for all y1 and y2 of appropriate sizes.

T
[∗]
1 =

[ −2 0
1 0

]
. H1T

[∗]
1 (T [∗]

1 T1 − T1T
[∗]
1 )T1 =

[
4 −2
−2 1

]
≥ 0, so T is

H-quasihyponormal matrix by Theorem 3.3.

Also, H1(T
[∗]
1 T1 − T1T

[∗]
1 ) =

[
1 2
2 −1

]
which is not nonnegative. This

proves that T is not H-hyponormal matrix ( [4]Proposition 3.6).

4 Strongly H-quasihyponormal matrices

In [11] H-normal matrices are defined by the inclusion TT [∗] ⊆ T [∗]T . The
H-normal matrix T has the property that KerH is always T -invariant. Also,
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it was shown that if T and H are in forms (1), then T is H-normal if and
only if T2 = 0 and T1 is H1-normal.

A matrix T is Moore-Penrose H-normal if HTH†T ∗H = T ∗HT , where
H† denotes Moore-Penrose generalized inverse of H. Recall that if T and
H are in the form (1), then the Moore-Penrose generalized inverse of H is

given by H† =
[

H−1
1 0
0 0

]
and the matrix T is Moore-Penrose H-normal

if and only if T ∗2 H1T2 = 0, T ∗2 H1T1 = 0 and T1 is H1-normal.

In [9] the authors presented result that if matrix T is Moore-Penrose H-
normal then KerH is always contained in a T -invariant H-neutral subspace.
In [4] it was shown that the class of H-hyponormal matrices does not have
this property because it is too general, so the authors in [4] defined a new
class of matrices - strongly H-hyponormal matrices. This class is the proper
subclass of H-hyponormal matrices, and small enough to ensure that the
kernel of H is always contained in an invariant H-neutral subspace.

As we saw, the class of H-quasihyponormal matrices is larger than the
class of H-hyponormal matrices and, of course, it is not the case that
KerH is contained in a T -invariant H-neutral subspace, when T is H-
quasihyponormal matrix, neither.

Now we will find the class of matrices which is larger than the strongly
H-hyponormal matrices, but still has the property that kernel of H is con-
tained in an invariant H-neutral subspace. This new class will be proper
subclass of H-quasihyponormal matrices.

Definition 4.1. Let k be a nonnegative integer. Then linear relation T ⊆
C2n is strongly H-quasihyponormal of degree k provided T is H- quasihy-
ponormal and (T [∗])iT i has full domain for all i = 1, . . . , k.

T is called strongly H-quasihyponormal if T is strongly H-quasihyponormal
of degree k for all k ∈ N.

Here, we will use the result of Proposition 4.4, [4], that for the matrices
T and H, given in the form (1), the assertions

(1) (T [∗])iT i has full domain for 1 ≤ i ≤ k, and

(2) T ∗2 H1(T
[∗]
1 )i−1T i−1

1 T1 = 0 and T ∗2 H1(T
[∗]
1 )i−1T i−1

1 T2 = 0 for 1 ≤ i ≤ k

13



are equivalent. As in [4], Proposition 4.5, we can deduce the next result.

Theorem 4.1. Let T ∈ Cn×n be a matrix. If T is strongly H-quasihyponormal
of degree k = rankH, then T is strongly H-quasihyponormal.

Now, we give the characterization of strongly H-quasihyponormal ma-
trices.

Theorem 4.2. A matrix T is strongly H-quasihyponormal if and only if

y1
∗T1

∗H1(T1
[∗]T1 − T1T1

[∗])T1y1 ≥ 0

for all y1, when T2
∗H1(T

[∗]
1 )i−1T1

i−1T1 = 0, T2
∗H1(T

[∗]
1 )i−1T1

i−1T2 = 0, for
all 1 ≤ i ≤ k, where k = rankH.

It is clear that the class of strongly H-hyponormal matrices is a sub-
class of strongly H-quasihyponormal matrices. These two classes does not
coincide, as it is shown in the following example.

Example 4.1. Let T =
[

T1 T2

T3 T4

]
=




−2 1
0 0

0
0

0 0 0


 and

H =
[

H1 0
0 0

]
=




1 0
0 −1

0
0

0 0 0


. As T2 = 0 it is clear that

T2
∗H1(T

[∗]
1 )i−1T1

i−1T1 = 0, and T2
∗H1(T

[∗]
1 )i−1T1

i−1T2 = 0, for all i = 1, 2,
so (T [∗])2T 2 has full domain.

Also, T ∗2 H1T
[∗]
1 T1(T1y1 + T2y2) = 0 are satisfied for all y1 and y2 of

appropriate sizes. We have T
[∗]
1 =

[ −2 0
−1 0

]
and H1(T

[∗]
1 T1 − T1T

[∗]
1 ) =

(
1 −2
−2 1

)
.

(T1y1 + T2y2)∗H1(T
[∗]
1 T1 − T1T

[∗]
1 )(T1y1 + T2y2)

= y∗1

[ −2 0
1 0

] [
1 −2
−2 1

] [ −2 1
0 0

]
y1 = y∗1

[
4 −2
−2 1

]
y1

=
(

y∗11 y∗12

) [
4 −2
−2 1

](
y11

y12

)
= (2y11 − y12)∗(2y11 − y12) ≥ 0,

thus T is strongly H-quasihyponormal matrix by Theorem 4.2.
On the other hand, T ∗2 H1y1 = 0 for all y1, but H1(T

[∗]
1 T1 − T1T

[∗]
1 ) =(

1 −2
−2 1

)
which is not nonnegative, so by Proposition 3.6. in [4], T is

not strongly H-hyponormal matrix.
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The class of all strongly H-quasihyponormal matrices also does not coin-
cide with the class of H-quasihyponormal matrices. This fact is illustrated
by the Example 3.2. In that example we saw that T is H-quasihyponormal
matrix, but it is easy to verify that T ∗2 H1T

[∗]
1 T1T1 6= 0, so T is not strongly

H-quasihyponormal matrix.

The Moore-Penrose H-normal matrices were investigated in [6, 9, 11],
and their connection with H-hyponormal and strongly H-hyponormal ma-
trices is given in [4]. We give the relation between H-quasihyponormal and
strongly H-quasihyponormal matrices and the Moore-Penrose H-normal
matrices.

Theorem 4.3. Let T ∈ Cn×n be a matrix and let T and H be in the forms
as in (1). Then the following assertions are equivalent:

(i) T is Moore-Penrose H-normal matrix;

(ii) T is strongly H-quasihyponormal matrix and T1 is H1-normal;

(iii) T is H-quasihyponormal matrix and T1 is H1-normal.

Proof. In [4], Theorem 5.5. it was shown that if T is Moore-Penrose H-
normal matrix then T is strongly H-hyponormal matrix and T1 is H1-
normal. It is clear that T is strongly H-quasihyponormal matrix, too, so
(1) implies (2).
If T is strongly H-quasihyponormal matrix, then we have by definition that
(2) implies (3).
Let T be H-quasihyponormal matrix. Then we have T2

∗H1T2 = 0 and
T ∗2 H1T1 = 0 and together with T1 is being H1-normal and Lemma 5.1. in
[4], we get (1).

As we see, in the special case when T is a matrix and T1 is H1-normal,
the properties of Moore-Penrose H-normal, strongly H-hyponormal, H-
hyponormal, strongly H-quasihyponormal and H-quasihyponormal matri-
ces are equivalent. We remark that in [4] the equivalence of the first tree
classes is shown.
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5 Invariant semidefinite subspaces of
H-quasihyponormal matrices

The next theorem shows that for a strongly H-quasihyponormal matrix T ,
given in the form (1), KerH is always contained in T -invariant H-neutral
subspace. In [4], Theorem 6.1. it is shown that it is true for H-hyponormal
matrices. Herein we do not give the proof of our theorem because it is com-
pletely identical to the proof of Theorem 6.1. in [4]. It is not unexpected at
all because the main ingredient of the proof is the ”domain condition”, which
is identical for strongly H-hyponormal and strongly H-quasihyponormal ma-
trices.

Theorem 5.1. Let T ∈ Cn×n be a strongly H-quasihyponormal matrix.
Let M be the smallest T -invariant subspace containing the kernel of H.
Then M is H-neutral. In particular, if T and H are in the forms (1), then
M = M0[+̇]KerH, where M0 (canonically identified with a subspace of Cm)
is H1-neutral and the smallest T1-invariant subspace that contains the range
of T2.

The main question is if it is possible to extend the subspace M from
previous theorem to maximal H-nonpositive subspace, as it is done for H-
hyponormal matrices; or we should find additional hypotheses that will make
it possible. To obtain that, we have to give the answer for the quasihyponor-
mal matrices in nondegenerate inner product spaces. Here the Hermitian
matrix H that determines indefinite inner product [., .] is invertible.

Unfortunately, some of the theorems important for this extension do not
hold for H-quasihyponormal matrices, as it is the case with the next result,
taken from [8]. The Example 5.1. proves it.

Theorem 5.2. Let X be H-hyponormal and let A = 1/2(X + X [∗]) and
S = 1/2(X − X [∗]) denote its H-selfadjoint and H-skew-adjoint parts, re-
spectively.

1. If the spectral subspace of A associated with the real spectrum of A
is not H-negative (not H-positive, respectively), then there exists a
common eigenvector of A and S that corresponds to a real eigenvalue
of A and is H-nonnegative (H-nonpositive, respectively).

2. If the spectral subspace of S associated with the purely imaginary (pos-
sibly including zero) spectrum of S is not H-negative (not H-positive,
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respectively), then there exists a common eigenvector of A and S that
corresponds to a purely imaginary eigenvalue of S and is H-nonnegative
(H-nonpositive, respectively).

Example 5.1. Let X =




0 1− ib 0
−ib 0 1− ib
0 −ib 0


, where b is an arbitrary

real number and H =




0 0 1
0 1 0
1 0 0


. Then X [∗] =




0 1 + ib 0
ib 0 1 + ib
0 ib 0




and HX [∗](X [∗]X−XX [∗])X =




0 0 0
0 4b2 0
0 0 0


, so X is H-quasihyponormal

matrix. Its H-selfadjoint and H-skew-adjoint parts are A =




0 1 0
0 0 1
0 0 0




and S =




0 −ib 0
−ib 0 −ib
0 −ib 0


, respectively. The spectral subspace of A asso-

ciated with the real axis is U = Span{e1}, which is not H-nonnegative. The
only eigenvector of A is e1, which is obviously an eigenvector of S just in
the case of b = 0. So for b 6= 0, A and S do not have a common eigenvector.
For b = 0, the matrix X is H-hyponormal and in that case A and S really
have a common eigenvector.

In [8] it was shown that for H-normal matrix T , invariant maximal H-
semidefinite subspaces are also invariant for the adjoint T [∗]. In [7] that
result was generalized for H-hyponormal matrices if the subspace under
consideration is assumed to be H-nonpositive. We will show that it is not
true for H-quasihyponormal matrices.

Example 5.2. Let X =




0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


, H =




0 0 1 0
0 −1 0 0
1 0 0 0
0 0 0 −1


. We

have X [∗] =




0 −1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 and HX [∗](X [∗]X − XX [∗])X = 0, so X is

H-quasihyponormal matrix. Clearly, the subspace U := Span{e2, e3, e4} is
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H-nonpositive X-invariant subspace of maximal dimension. But X [∗]e2 =
−e1 /∈ U , proving that U is not X [∗]-invariant.

Thus, the solution of the problem of finding additional assumptions for
which the extension on maximal invariant H-nonpositive subspace would
be possible for strongly H-quasihyponormal matrices demands appropriate
results for H-quasihyponormal matrices in nondegenerate indefinite inner
product spaces, which will be the subject of a later research.
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University of Nǐs, Faculty of Sciences and Mathematics, Department of
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